隨著PCB設(shè)計(jì)復(fù)雜度的逐步提高,對(duì)于信號(hào)完整性的分析除了反射,串?dāng)_以及EMI之外,穩(wěn)定可靠的電源供應(yīng)也成為設(shè)計(jì)者們重點(diǎn)研究的方向之一。尤其當(dāng)開(kāi)關(guān)器件數(shù)目不斷增加,核心電壓不斷減小的時(shí)候,電源的波動(dòng)往往會(huì)給系統(tǒng)帶來(lái)致命的影響,于是人們提出了新的名詞:電源完整性,簡(jiǎn)稱(chēng)PI(powerintegrity)。當(dāng)今國(guó)際市場(chǎng)上,IC設(shè)計(jì)比較發(fā)達(dá),但電源完整性設(shè)計(jì)還是一個(gè)薄弱的環(huán)節(jié)。因此本文提出了PCB板中電源完整性問(wèn)題的產(chǎn)生,分析了影響電源完整性的因素并提出了解決PCB板中電源完整性問(wèn)題的優(yōu)化方法與經(jīng)驗(yàn)設(shè)計(jì),具有較強(qiáng)的理論分析與實(shí)際工程應(yīng)用價(jià)值。二、電源噪聲的起因及分析對(duì)于電源噪聲的起因我們通過(guò)一個(gè)與非門(mén)電路圖進(jìn)行分析。圖1中的電路圖為一個(gè)三輸入與非門(mén)的結(jié)構(gòu)圖,因?yàn)榕c非門(mén)屬于數(shù)字器件,它是通過(guò)“1”和“0”電平的切換來(lái)工作的。隨著IC技術(shù)的不斷提高,數(shù)字器件的切換速度也越來(lái)越快,這就引進(jìn)了更多的高頻分量,同時(shí)回路中的電感在高頻下就很容易引起電源波動(dòng)。如在圖1中,當(dāng)與非門(mén)輸入全為高電平時(shí),電路中的三極管導(dǎo)通,電路瞬間短路,電源向電容充電,同時(shí)流入地線。此時(shí)由于電源線和地線上存在寄生電感,我們由公式V=LdI/dt可知,這將在電源線和地線上產(chǎn)生電壓波動(dòng),如圖2中所示的電平上升沿所引入的ΔI噪聲。當(dāng)與非門(mén)輸入為低電平時(shí),此時(shí)電容放電,將在地線上產(chǎn)生較大的ΔI噪聲;而電源此時(shí)只有電路的瞬間短路所引起的電流突變,由于不存在向電容充電而使電流突變相對(duì)于上升沿來(lái)說(shuō)要小。從對(duì)與非門(mén)的電路進(jìn)行分析我們知道,造成電源不穩(wěn)定的根源主要在于兩個(gè)方面:一是器件高速開(kāi)關(guān)狀態(tài)下,瞬態(tài)的交變電流過(guò)大;
天津開(kāi)發(fā)PCB抄板設(shè)計(jì)這里主要是說(shuō)了從PCB設(shè)計(jì)封裝來(lái)解析選擇元件的技巧。元件的封裝包含很多信息,包含元件的尺寸,PCB抄板設(shè)計(jì)生產(chǎn)商特別是引腳的相對(duì)位置關(guān)系,還有元件的焊盤(pán)類(lèi)型。當(dāng)然我們根據(jù)元件封裝選擇元件時(shí)還有一個(gè)要注意的地方是要考慮元件的外形尺寸。引腳位置關(guān)系:主要是指我們需要將實(shí)際的元件的引腳和PCB元件的封裝的尺寸對(duì)應(yīng)起來(lái)。我們選擇不同的元件,雖然功能相同,但是元件的封裝很可能不一樣。我們需要保證PCB焊盤(pán)尺寸位置正確才能保證元件能正確焊接。焊盤(pán)的選擇:這個(gè)是我們需要考慮的比較多的地方。首先包括焊盤(pán)的類(lèi)型。其類(lèi)型包括兩種,一是電鍍通孔,一種是表貼類(lèi)型。我們需要考慮的因素有器件成本、可用性、器件面積密度和功耗等因數(shù)。從制造角度看,表貼器件通常要比通孔器件便宜,而且一般可用性較高。對(duì)于我們一般設(shè)計(jì)來(lái)說(shuō),我們選擇表貼元件,不僅方便手工焊接,而且有利于查錯(cuò)和調(diào)試過(guò)程中更好的連接焊盤(pán)和信號(hào)。其次我們還應(yīng)該注意焊盤(pán)的位置。因?yàn)椴煌奈恢?,就代表元件?shí)際當(dāng)中不同的位置。我們?nèi)绻缓侠戆才藕副P(pán)的位置,很有可能就會(huì)出現(xiàn)一個(gè)區(qū)域元件過(guò)密,而另外一個(gè)區(qū)域元件很稀疏的情況,當(dāng)然情況更糟糕的是由于焊盤(pán)位置過(guò)近,導(dǎo)致元件之間空隙過(guò)小而無(wú)法焊接,下面就是我失敗的一個(gè)例子,我在一個(gè)光耦開(kāi)關(guān)旁邊開(kāi)了通孔,但是由于它們的位置過(guò)近,導(dǎo)致光耦開(kāi)關(guān)焊接上去以后,通孔無(wú)法再放置螺絲了。另外一種情況就是我們要考慮焊盤(pán)如何焊接。在實(shí)際過(guò)程中我們常按一個(gè)特定的方向排列焊盤(pán),焊接起來(lái)比較方便。元件的外形尺寸:在實(shí)際應(yīng)用當(dāng)中,一些元件(如有極性電容)可能有高度凈空限制,所以我們需要在元件選擇過(guò)程中加以考慮。我們?cè)谧畛蹰_(kāi)始設(shè)計(jì)時(shí),可以先畫(huà)一個(gè)基本的電路板外框形狀,然后放置上一些計(jì)劃要使用的大型或位置關(guān)鍵元件(如連接器)。這樣,就能直觀快速地看到(沒(méi)有布線的)電路板虛擬透視圖,并給出相對(duì)精確的電路板和元器件的相對(duì)定位和元件高度。這將有助于確保PCB經(jīng)過(guò)裝配后元件能合適地放進(jìn)外包裝(塑料制品、機(jī)箱、機(jī)框等)內(nèi)。當(dāng)然我們還可以從工具菜單中調(diào)用三維預(yù)覽模式瀏覽整塊電路板。對(duì)于元件的選擇,除了要依據(jù)設(shè)計(jì)要求外,還要選擇正規(guī)廠家所生產(chǎn)的產(chǎn)品,這樣才能保證實(shí)現(xiàn)你的設(shè)計(jì)目標(biāo)。
高速數(shù)字PCB板的等線長(zhǎng)是為了使各信號(hào)的延遲差保持在一個(gè)范圍內(nèi),保證系統(tǒng)在同一周期內(nèi)讀取的數(shù)據(jù)的有效性(延遲差超過(guò)一個(gè)時(shí)鐘周期時(shí)會(huì)錯(cuò)讀下一周期的數(shù)據(jù)),一般要求延遲差不超過(guò)1/4時(shí)鐘周期,單位長(zhǎng)度的線延遲差也是固定的,延遲跟線寬,線長(zhǎng),銅厚,板層結(jié)構(gòu)有關(guān),但線過(guò)長(zhǎng)會(huì)增大分布電容和分布電感,使信號(hào)質(zhì)量,所以時(shí)鐘IC引腳一般都接RC端接,但蛇形走線并非起電感的作用,相反的,電感會(huì)使信號(hào)中的上升元中的高次諧波相移,造成信號(hào)質(zhì)量惡化,所以要求蛇形線間距最少是線寬的兩倍,信號(hào)的上升時(shí)間越小就越易受分布電容和分布電感的影響.因?yàn)閼?yīng)用場(chǎng)合不同具不同的作用,如果蛇形走線在電腦板中出現(xiàn),其主要起到一個(gè)濾波電感的作用,提高電路的抗干擾能力,電腦主機(jī)板中的蛇形走線,主要用在一些時(shí)鐘信號(hào)中,如CIClk,AGPClk,它的作用有兩點(diǎn):1、阻抗匹配 2、濾波電感。對(duì)一些重要信號(hào),如INTEL HUB架構(gòu)中的HUBLink,一共13根,跑233MHz,要求必須嚴(yán)格等長(zhǎng),以消除時(shí)滯造成的隱患,繞線是解決辦法。一般來(lái)講,蛇形走線的線距>=2倍的線寬。PCI板上的蛇行線就是為了適應(yīng)PCI 33MHzClock的線長(zhǎng)要求。若在一般普通PCB板中,是一個(gè)分布參數(shù)的 LC濾波器,還可作為收音機(jī)天線的電感線圈,短而窄的蛇形走線可做保險(xiǎn)絲等等.
尤其在使用高速數(shù)據(jù)網(wǎng)絡(luò)時(shí),攔截大量信息所需要的時(shí)間顯著低于攔截低速數(shù)據(jù)傳輸所需要的時(shí)間。數(shù)據(jù)雙絞線中的絞合線對(duì)在低頻下可以靠自身的絞合來(lái)抵抗外來(lái)干擾及線對(duì)之間的串音,但在高頻情況下(尤其在頻率超過(guò)250MHz以上時(shí)),僅靠線對(duì)絞合已無(wú)法達(dá)到抗干擾的目的,只有屏蔽才能夠抵抗外界干擾。電纜屏蔽層的作用就像一個(gè)法拉第護(hù)罩,干擾信號(hào)會(huì)進(jìn)入到屏蔽層里,但卻進(jìn)入不到導(dǎo)體中。因此,數(shù)據(jù)傳輸可以無(wú)故障運(yùn)行。由于屏蔽電纜比非屏蔽電纜具有較低的輻射散發(fā),因而防止了網(wǎng)絡(luò)傳輸被攔截。屏蔽網(wǎng)絡(luò)(屏蔽的電纜及元器件)能夠顯著減小進(jìn)入到周?chē)h(huán)境中而可能被攔截的電磁能輻射等級(jí)。不同干擾場(chǎng)的屏蔽選擇干擾場(chǎng)主要有電磁干擾及射頻干擾兩種。電磁干擾(EMI)主要是低頻干擾,馬達(dá)、熒光燈以及電源線是通常的電磁干擾源。射頻干擾(RFI)是指無(wú)線頻率干擾,主要是高頻干擾。無(wú)線電、電視轉(zhuǎn)播、雷達(dá)及其他無(wú)線通訊是通常的射頻干擾源。對(duì)于抵抗電磁干擾,選擇編織屏蔽最為有效,因其具有較低的臨界電阻;對(duì)于射頻干擾,箔層屏蔽最有效,因編織屏蔽依賴于波長(zhǎng)的變化,它所產(chǎn)生的縫隙使得高頻信號(hào)可自由進(jìn)出導(dǎo)體;而對(duì)于高低頻混合的干擾場(chǎng),則要采用具有寬帶覆蓋功能的箔層加編織網(wǎng)的組合屏蔽方式。通常,網(wǎng)狀屏蔽覆蓋率越高,屏蔽效果就越好。
在PCB板的設(shè)計(jì)當(dāng)中,可以通過(guò)分層、恰當(dāng)?shù)牟季植季€和安裝實(shí)現(xiàn)PCB的抗ESD設(shè)計(jì)。在設(shè)計(jì)過(guò)程中,通過(guò)預(yù)測(cè)可以將絕大多數(shù)設(shè)計(jì)修改僅限于增減元器件。通過(guò)調(diào)整PCB布局布線,能夠很好地防范ESD。以下是一些常見(jiàn)的防范措施。1、盡可能使用多層PCB相對(duì)于雙面PCB而言,地平面和電源平面,以及排列緊密的信號(hào)線-地線間距能夠減小共模阻抗和感性耦合,使之達(dá)到雙面PCB的1/10到1/100。盡量地將每一個(gè)信號(hào)層都緊靠一個(gè)電源層或地線層。對(duì)于頂層和底層表面都有元器件、具有很短連接線以及許多填充地的高密度PCB,可以考慮使用內(nèi)層線。2、對(duì)于雙面PCB來(lái)說(shuō),要采用緊密交織的電源和地柵格。電源線緊靠地線,在垂直和水平線或填充區(qū)之間,要盡可能多地連接。一面的柵格尺寸小于等于60mm,如果可能,柵格尺寸應(yīng)小于13mm。3、確保每一個(gè)電路盡可能緊湊。4、盡可能將所有連接器都放在一邊。5、在每一層的機(jī)箱地和電路地之間,要設(shè)置相同的“隔離區(qū)”;如果可能,保持間隔距離為0.64mm。6、PCB裝配時(shí),不要在頂層或者底層的焊盤(pán)上涂覆任何焊料。使用具有內(nèi)嵌墊圈的螺釘來(lái)實(shí)現(xiàn)PCB與金屬機(jī)箱/屏蔽層或接地面上支架的緊密接觸。